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Lecture 5: Crystal planes and Miller Indices  

Index system for crystal directions and planes 
Crystal directions: Any lattice vector can be written as that given by Eq.(1.2). The direction is then 

specified by the three integers [n1n2n3]. If the numbers n1n2n3 have a common factor, this factor is 

removed. For example, [111] is used rather than [222], or [100], rather than [400]. When we speak 

about directions, we mean a whole set of parallel lines, which are equivalent due to transnational 

symmetry. Opposite orientation is denoted by the negative sign over a number. For example: 

  

 
 
 
 
 
 
 
 

 
 

Crystal planes: The orientation of a plane in a lattice is specified by Miller indices. They are 

defined as follows. We find intercept of the plane with the axes along the primitive translation 

vectors a1, a2 and a3. Let’s these intercepts be x, y, and z, so that x is fractional multiple of a1, y is a 

fractional multiple of a2 and z is a fractional multiple of a3. Therefore we can measure x, y, and z in 

units a1,  a2 and a3 respectively. We have then a triplet of integers (x y z). Then we invert it (1/x 1/y 

1/z) and reduce this set to a similar one having the smallest integers by multiplying by a common 

factor. This set is called Miller indices of the plane (hkl). For example, if the plane intercepts x, y, 

and z in points 1, 3, and 1, the index of this plane will be (313). 

 

The orientation of a crystal plane is determined by three points in the plane, provided they are not 

collinear. If each point lay on a different crystal axis, the plane could be specified by giving the co-

ordinates of the points in terms of the lattice constants a, b, c. A notation conventionally used to 

describe lattice points (sites), directions and planes is known as Miller Indices.  

A crystal lattice may be considered as an assembly of equidistant parallel planes passing through the 

lattice points and are called lattice planes. In order to specify the orientation one employs the so 

called Miller indices. 

For simplicity, let us start with a two dimensional lattice and then generalized to three dimensional 

case. 



Lecture Notes on Structure of Matter by Mohammad Jellur Rahman, Department of Physics, BUET, Dhaka-1000 

 28 

The equation of plane in 2-D and 3D having the intercepts a, b and a, b, c respectively are 

11 
c
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b
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Crystal direction is the direction (line) of axes or line from the origin and denoted as [111], [100], 

[010] etc. 

 

How to find Miller Indices: 

To determine the indices for the plane p in Figure 2,  

-first we have to find the intercepts with the axes along the basis vector 


cba ,, . Let these intercepts 

be x, y, z. We form the fractional triplet  c
z

b
y

a
x ,, . 

-Take reciprocal to this set. 

-Then reduce this set to a similar one having the smallest integers multiplying by common factor. 

To determine the Miller indices: 

 (i) Find the intercepts on the axes along the basis vector 


cba ,,  in terms of the lattice constants a,b 
and c. The axes may be those of a primitive or nonprimitive cell. 

Let these intercepts be x, y, z. We form the fractional triplet  c
z

b
y

a
x ,, . 

(ii) Take the reciprocals of these numbers. 
(iii) Reduce the numbers to three smallest integers by multiplying the numbers with the same 
integral multipliers.  
 

This last set is enclosed in parentheses (h k l), is called the index of the plane or Miller Indices. 

The Miller indices specify not just one plane but an infinite set of equivalent planes. Note that for 
cubic crystals the direction [hkl] is perpendicular to a plane (hkl) having the same indices, but this is 
not generally true for other crystal systems. Examples of the planes in a cubic 

system:
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Example: Let the intercepts are x = 2a, y = 3/2b, z – c.  

We first form the set    1,,2,, 2
3c

z
b
y

a
x , 

Then invert it  1,, 3
2

2
1 y   

and finally multiply by a common (factor) denomenator. Which is 6, to obtain the miller indices (3 

4 6). 

Exercise: x = 2a, y = 3b, z = 6c  (321). 

 
The indices of some important planes in a cubic crystal 
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Relation between interplanar spacing and Miller indices: 

Let us consider three mutually perpendicular coordinate axis, OX, OY, and Oz and assume 

that a plane (hkl) parallel to the plane passing through the origin makes intercepts a/h, b/k and c/l on 

the three axes at A. B and C respectively as shown in figure. 

Let OP = dhkl, the interplaner spacing be normal to the plane 

drawn from the origin and makes angle , , and  with the 

three axes respectively.  

Therefore, 
l
cOC

k
bOB

h
aOA  ,,  

From OPA we get, 
h

a
hkld

OA
OP

cos  

Similarly, from OPB we get 
k

b
hkld

OB
OP

cos  

and from OPC we get 
l

c
hkld

OC
OP

cos  

But, for a rectangular coordinate system, using directional 

cosine we have 

cos2 + cos2 + cos2 = 1                       (1) 

Substituting the values of cos, cos and cos in Eq.1 we get, 
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This is the general formula and is applicable to the primitive lattice of orthorhombic, tetragonal and 

cubic systems. 

i) Orthorhombic system: a  b  c 
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ii) Tetragonal system: a = b  c 

 

 

 

 

 

 

 

 

# a = b = 2.42Å and c = 1.74Å   
then  d101 = 1.41Å 
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ii) Cubic system: a = b = c  

 

 

 

 

 

 

 

 

 

 

For bcc         d100 = 2
1 (d100,sc ) = 2

a  

  d110 = (d110,sc) = 
2

a  

  d111 = 2
1 (d111,sc) = 

32
a  

and                  d100: d110: d111= 1:2: 
3

1  

 

For bcc         d100 = 2
1 (d100,sc) = 2

a  

  d110 = (d110,sc) = 
2

a  

  d111 = 2
1 (d111,sc) = 

32
a  

and                   d100: d110: d111= 1: 2
1 : 3

2  

 

Ex: Determine the Miller Indices of a plane which is parallel to x-axis and cuts intercepts of 2 

and 2
1

, respectively along y and z axes. 

 

Solution: 

i)  Intercepts         2b  c2
1  

ii) Division by unit translation  
a  22 b

b
 2

1
2
3 c

c
 

iii) Reciprocals   
1

 2
1

    2 
iv) After clearing fraction     0   1    4 
 

Therefore the required Miller indices of the plane (014) 

222 lkh
ad hkl


  

  # a = 2Å, d111 = 23Å 
 # a = 421Å , d321 = 1.01 Å 

# d100 = a, d110 = 2
a

Å d111 = 3
a

Å  

 d100: d110: d111 = 1: 2
1

: 3
1
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Ex: Determine the M. I. of a plane theat makes intercepts of 2Å, 3 Å, 4 Å on the co-ordinate axes of 

an orthorhombic crystal with a:b:c = 4:3:2 

 

Solution:  

Here the unit translations are a = 4, b = 3 and c = 2 following the same procedure 

i) Intercepts     2  3  4 

ii) Division by unit translation 2
1

4
2   13

3    22
4   

iii) Reciprocals   2  1  2
1  

iv) After clearing fraction  4  2  1 

Therefore the Miller indices of the plan is (421) 

 

 



Lecture Notes on Structure of Matter by Mohammad Jellur Rahman, Department of Physics, BUET, Dhaka-1000 

 33 

Lecture 6: X-ray diffraction and Bragg’s law: 

 

The inter-atomic spacing in crystals is of the order of 1Å. Because of the short wavelength 

(comparable to the inter-planer distance), X-rays are scattered by adjacent atoms in crystals which 

can interfere and give rise to diffraction effects. When X-rays enter into a crystal, each atom acts as 

a diffraction centre and crystal as a whole acts like a three dimensional diffraction grating. The 

diffraction pattern so produced can tell us much about the internal arrangement of atoms in crystal.  

 

Let us consider a crystal made up of equidistant parallel planes of atoms with the inter-planer 

spacing dhkl. Further, consider a 

monochromatic x-ray beam of wavelength  

having a common wave front, falls at an 

angle  on the planes as shown in Figure. 

Each atom scatter the x-rays more or less 

uniformly in all directions, but because of 

the periodic arrangement of atoms, the 

scattered radiation from all atoms in a set of 

planes is in phase where they interfere 

constructively. In all other directions, there 

is destructive interference. 

Consider two of the incoming x-ray OA and O′E inclined at an angle  with the topmost plane of 

the crystal and are scattered in the directions AP and EP′, also at an angle  with that plane. Since 

the path length of the rays OEP′ and O′AP are the same, they arrive at P and P′ respectively in phase 

with each other and again form a common wavefront. This is the condition for scattering in phase 

by single plane of the crystal. 

 

Now, let us consider X-ray scattering from two adjacent planes (hkl)1 and (hkl)2 as shown in Figure. 

If EB and ED are parallel to the incident and scattered wavefront respectively, the total path O′CP 

is longer than the path OEP′ by an amount 

 

      = BCD = BC + BD      (1) 
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Now, from the right angle triangle EBC and EDC, we have 

     BC = dsin = BD 

So,      = 2d sin       (2) 

If two consecutive planes scattered in phase with each other then we know that the path difference  

must be equal to an integral multiple of wavelength, i.e.  = n , where n = 0, 1, 2 ... gives the order 

of reflection. Thus the condition for constructive interference (in-phase scattering) by a set of 

equidistant parallel planes in a crystal is given by 

     2d sin = n        (3) 

This is the well known Bragg’s law, which was first derived by the English physicists Sir W.H. 

Bragg and his son Sir W.L. Bragg in 1913. Thus diffraction (constructive) occurs for certain 

discrete values of  for which the Bragg’s condition is fulfilled. 

As     (sin)max = 1,       we get,   1
2


d

n . 

That is,  must not be greater than twice the interplaner spacing, otherwise no diffraction will occur. 

This observation is an example of X-ray wave interference, commonly known as X-ray diffraction 

(XRD), and was direct evidence for the periodic atomic structure of crystals postulated for several 

centuries. The Braggs were awarded the Nobel Prize in physics in 1915 for their work in 

determining crystal structures beginning with NaCl, ZnS and diamond. Although Bragg's law was 

used to explain the interference pattern of X-rays scattered by crystals, diffraction has been 

developed to study the structure of all states of matter with any beam, e.g., ions, electrons, neutrons, 

and protons, with a wavelength similar to the distance between the atomic or molecular structures of 

interest. 

William Henry Bragg and William Lawrence Bragg were the first and (so far) the only father-son 

team to have jointly won the prize. Other father/son laureates include Niels and Aage Bohr, Manne 

and Kai Siegbahn, J. J. Thomson and George Thomson, Hans von Euler-Chelpin and Ulf von Euler, 

and Arthur and Roger Kornberg, who were all awarded the prize for separate contributions. W. L. 

Bragg was 25 years old at the time, making him the youngest Nobel laureate to date. 

For certain specific wavelengths and incident angles, intense peaks of reflected radiation (known as 

Bragg peaks) were produced. The concept of Bragg diffraction applies equally to neutron 

diffraction and electron diffraction processes. When x-rays are incident on an atom, they make the 
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electronic cloud move as does any electromagnetic wave. The movement of these charges re-

radiates waves with the same frequency (blurred slightly due to a variety of effects); this 

phenomenon is known as Rayleigh scattering (or elastic scattering). The scattered waves can 

themselves be scattered but this secondary scattering is assumed to be negligible. A similar process 

occurs upon scattering neutron waves from the nuclei or by a coherent spin interaction with an 

unpaired electron. These re-emitted wave fields interfere with each other either constructively or 

destructively (overlapping waves either add together to produce stronger peaks or subtract from 

each other to some degree), producing a diffraction pattern on a detector or film. The resulting wave 

interference pattern is the basis of diffraction analysis. 

When the energetic electrons strike the target, which is a pure metal such as copper or molybdenum, 

and remove inner (K) shell electrons. When this happens, other electrons from higher level shells 

drop into the vacant K-shell and in so doing emit a photon (X-ray) whose wavelength (energy) is 

characteristic of the metal target material. In order to remove the inner shell electron, the incoming 

electron must have an energy greater than the difference in energy between the inner (K) shell 

electron and a free electron in the conduction band of the target metal. This energy difference is 

referred to as the absorption edge energy. 

 Both KCl and KBr have sodium chloride structure 

shown in the figure. In this structure the two types 

of atoms are arranged alternatively at the lattice 

sites of a simple cubic lattice. The space lattice is 

fcc with a basis of two non-equivalent atoms at 000 

and ½½½.  

In KCl the number of electrons of K+ and Cl- ions 

are equal and the charge distribution is similar. 

Therefore, the form factors for K+ and Cl- are almost 

exactly equal, so that the crystal looks to x-rays as if 

it were a monatomic simple cubic lattice of lattice 

constant a/2. Only even integers occur in the 

reflection indices when these are based on a cubic 

lattice of lattice constant a. In KBr the form factor 

of Br- is quite different than that of K+, and all 

reflections of the fcc lattice are present. 

Figure: Comparison between X-ray 
reflections from KCl and KBr. 
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Exercise: Determine the angle through which an X-ray of wavelength 0.440Å be reflected from the 

cube face of a rocksalt crystal (d = 2.814Å). 

Solution:  Given  = 0.440Å.  d = 2.814Å   





 

d
n
2

sin 1 
   

1st order reflection, n = 1, /o294)0782.0sin(
814.22
440.01sin 1

1 










   

2nd order reflection,  n = 2,   /1
2 5980782.02sin o   

3rd order reflection,  n = 3,   /1
3 34130782.03sin o  ,  etc. 

 

Exercise: Determine the wavelength of the diffraction beam, when a beam of X-ray having 

wavelengths in the range 0.2Å to 1Å incident at an angle of 9° with the cube face of a rocksalt 

crystal (d = 2.814Å) 

Solution: n = 1 11 = 2(2.814) Sin 9°   1 = 0.8804 Å 

n = 2 22 = 0.8804Å   2 = 0.4402 Å 

n = 3 33 = 0.8804Å   3 = 0.2935 Å 

n = 4 44 = 0.8804Å   4 = 0.2201 Å 

n = 5 55 = 0.8804Å   5 = 0.1760 Å < 0.2 Å 

which shows the wavelength of the X-rays are 0.8804, 0.4402, 0.2935 and 0.2201 Å. 

 

Experimental x-ray diffraction Methods: 

To satisfy Bragg’s law, it is necessary to vary either the angle of inclination of the specimen to the 

beam or the wavelength of the radiation. The three standard methods of X-ray crystallography are 

a) Laue Method: A stationary single crystal is irradiated by a range of X-ray wavelengths. 

b) Rotating crystal Method: A single crystal specimen is rotated in a beam of monochromatic X-

rays. 

c) Powder Method: A polycrystalline powder specimen is kept stationary in a beam of 

monochromatic radiation. 

Of these techniques, Laue method is used only for known crystal orientation measurement. 
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The powder method assumes that all orientations are present in the sample, so that regardless of the 

angle of incidence, there will be a grain in the proper orientation for each reflection (diffraction). 

The patterns are very useful for identification of unknowns. There are compiled indexes of powder 

diffraction data for minerals, as well as inorganic compounds and organic compounds.  

If the Miller indices of the diffraction peaks are known, it is possible to determine the unit cell 

parameters of the material from the peak positions. Cell parameters can then be used to determine 

composition if the cell variation with composition is known.  

If more than one mineral is present in the sample it is possible, although not easy, to determine the 

relative proportions of the minerals. To do this one must have a standard pattern for each pure 

mineral to obtain the realtive internities of the peaks form each mineral. It is then possible to use the 

relative intensities of non-overlapping peaks to give an estimate of the mineral proportions, called a 

mode". 

Exercise: 

Compute the lattice spacing for the (211) reflection of olivine with a = 4.830 Å b= 10.896 Å and c= 
6.288 Å:  

1/d2 = h2/a 2 + k2/b2 + l2/c2 1/d2= (2/4.830)2 + (1/10.896)2 + (1/6.288)2 d = 2.2077 Å  

What is the angle for this reflection using Cu k-alpha radiation ( lambda = 1.5405 Å)  

nlambda  = 2d sin theta 
theta = sin-1 (lambda /2d) 
theta = 20.413º 
2theta = 40.825º 
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Compute the spacing for (131) garnet with a = 11.46Å and Cu k-alpha radiation ( l = 1.5405 Å)  

d = a / ( h2 + k2 + l2)1/2 
d = 11.46/(11)1/2 = 3.455 Å 
n lambda = 2d sin theta 
theta = sin-1(n lambda /2d)  
= sin-1(1.54/2(3.455)) 
theta = 12.876º 
2theta =25.754º 

What is the energy, in joules, of an X-ray photon of Cu k-alpha radiation ( lambda = 1.540 Å)?  

E = h nu    n = c/l   h  = Planck's Constant = 6.6 x 10-34 j sec 
E = hc / l           c = speed of light = 3 x 108 

 m/sec 
                   1 ev = 1.6019 x 10-19 
E = (6.6 x 10-34) j s (3 x 108 m/sec)  
/ 1.5405 x 10-10m 
E = 1.286x10-15 j /1.6019x10-19  
j/ev 
    in electron volts E = 8026 ev 

What frequency is Mo k-alpha radiation ( lambda= 0.70926 Å)?  

n = c / lambda  
n = (3.0 x 108)m/sec / (.70926 x  
10-10))m 
n = 4.2297 x 1018sec-1  
= 4.2297x1018 htz (htz = hertz = sec-1) 

The absorption edge of Cu k-series radiation is 1.380 Å. What is the minimum KV setting on the X-
ray generator required to produce Cu k-series radiation?  

E = hc / l = (6.6x10-34 jsec)(3.0x10 8 m/sec) (1.380 x 10-1))m / (1.6019x10-19 ) j/ev E = 8956 ev E = 
8.956 Kev = 8.9 KV 5.4. X-ray Powder Diffraction Instruments 

 

 

 

 


